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Abstract—In this paper we investigate the effect of a viscoelastic interfacial zone on the mechanical
behavior of a transversely loaded fiber-reinforced composite. A simple linearly viscoelastic model
is used to characterize the stiffness and viscosity of the interface separating the fibers and the matrix.
The mechanical response is obtained using the finite element method and calculations are carried
out for a unit cell in a periodic array of hexagonally packed fibers. An approximate representation
of the time-dependent macroscopic behavior of the composite is derived analytically and compared
with the numerical results. From a micromechanical perspective, the influence of interfacial stress
relaxation on the stress fields in the matrix material contiguous to the interface is also examined.

1. INTRODUCTION

Since the advent of the modern fiber-reinforced composite, the determination of the mech-
anical propertics of these matcrials has become of significant practical importance. Unlike
the axial strength and stiffness propertics which are primarily governed by the axial prop-
erties of the fiber, the behavior of a fiber-reinforced composite in the transverse direction
is dominated by a relatively low stiffness matrix material and the nature of the bond between
the fiber and matrix phases. This may place severe limitations on the overall performance
of the composite and thus it is desirable to accurately characterize the transverse propertices.

In most analytical and numerical work, investigators have assumed a perfect bond
between the fibers and the matrix material which is modeled by continuity of interfacial
tractions and displacements. In reality, however, a more complex state exists between the
fiber and matrix constituents, and the assumption of perfect bonding may not be suitable
in the presence of a thin interfacial zone which connects the two phases (¢.g. fiber coating
or intermolecular bonding). In this analysis it is assumed that the bond between the fibers
and the matrix is effected across an infinitesimally thin interfacial zone which supports a
traction field with both normal and tangential components. Continuity of tractions is
assumed across the interface ; however, displacements may be discontinuous from fiber to
matrix due to the presence of the interfacial zone in between. Such a model, assuming a
linear relationship between the displacement jumps across the interface and the conjugate
tractions, is employed by Aboudi (1987), Steif and Hoysan (1987), Achenbach and Zhu
(1989a,b) and Hashin (1990). Needleman (1987) utilizes this model to simulate the bond
between rigid spherical inclusions embedded in an isotropically hardening elastic~visco-
plastic matrix and considers a more general interfacial constitutive relation.

In implementing the above-mentioned interface model, care must be taken in order to
avoid an unrealistic interpenetration of the matrix and fiber phases which can occur in local
regions of compression. As will be seen later, the imposition of such a constraint significantly
influences the transverse mechanical behavior of the composite with a relatively low stiffness
interfacial zone.

In the present paper, the role of a viscoelastic interface on the transverse properties of
a fiber-reinforced composite is considered from both a macroscopic and a microscopic
perspective. The choice of a relatively simple linearly viscoelastic interface model allows us
to derive an approximate representation for the transverse relaxation moduli of the com-
posite with which to compare our numerical results. We note that this analytical model
does not incorporate the aforementioned impenetrability constraint. and of primary interest
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Fig. 1. Mid-CPD loading configuration for the hexagonal array composite.

is how well it compares with the numerical results over a range of interfacial stiffness
parameters. In addition, the influence of interfacial stress relaxation on the stress fields
in the matrix material contiguous to the interface is examined from a micromechanical
viewpoint.

In the following section, the model which is chosen to represent the behavior of a
unidirectional, fiber-reinforced composite is described and the boundary value problem is
formulated. Discussed in Section 3 are implementational details of the finite element method,
the numerical procedure employed in this analysis. [n Section 4, the analytic model which
approximates the transverse relaxation moduli of the fiber-reinforced composite is described
and compared with the numerical results. In Section 3, a qualitative discussion is presented
regarding the effect of interfacial stress relaxation on the resulting stress fields in the matrix
material near the fiber/matrix interface. Finally, some concluding remarks are stated in
Section 6.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A cross-sectional view of the model employed in this analysis is illustrated in Fig. 1. It
is assumed that the fibers, all of equal radius, a. arc periodically spaced in a regular
hexagonal array and are embedded in an infinite matrix. Two loading directions are
considered in this analysis, the closest packing direction (CPD) and the mid-closest packing
direction (mid-CPD). The mid-CPD loading direction which biscets the angle formed by
two closest packing directions is illustrated in Fig. 1.

Through arguments of symmetry, it is only necessury to analyze the rectangular regton
outlined in Fig. | and shown in detail in Fig. 2. Neglecting all rigid body motion, the point
0, located at the origin of the Cartesian coordinate system shown in the figure, is considered
fixed throughout the analysis. By imposing the appropriate boundary conditions on one
half of this rectangular region, i.e. the trapezoid ABEF consisting of one quarter of a regular
hexagon with sides of length b, the state of stress and strain for the entire model may be
completely characterized.

2.1. Boundary conditions

The relevant boundary conditions for the case of CPD loading are given below. The
corresponding expressions for the case of mid-CPD loading are obtained similarly, see e.g.
Achenbach and Zhu (1989b). Referring again to Fig. 2, the loading direction is parallel to
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Fig. 2. Schematic of the representative cell of the hexagonal array composite.
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Table !. Elastic constants of the graphite epoxy material system considered.

ExGPa) vi Er(GPa) w  GaGPa) Gr(GPa) Kr(GPa)

Graptute fiber 22 0279 15.0 0.490 24.0 503 15.0

Epoxy matrix 3.35 0354 5.35 0.354 1976 1.976 6.76

the x, axis of the Cartesian reference frame centered at O. Relative to this frame, the
boundary conditions along the external boundaries AB. EF, and AF respectively are
expressed as follows:

3b b 3
Y|E[—T,z], \'z——\{‘ b, 0':|=0. ll2=—Aw (1)
b b 3
\'lE[“T.Z]. V:=+\L4‘b, 0':|_0, ll:=+A2 (2)
3 3 3h
."26[—"\‘/“{‘[). +>/3—‘h], X = —‘5‘.: U|:=0, u, = '—A| (3)

where «; and u; are the displacement components in the x, and x, directions and A, is the
magnitude of the prescribed displacement in the x, direction along AB and EF. The quantity
4, is the magnitude of the unknown displacement in the x, direction along AF to be
determined as part of the numerical solution. Along BE, the following displacement con-
dition must hold:

(=X, =) = = (X, X)), ua(—=xy, —Xa) = —ua(xy,X,). 4)

One additional relevant condition for this case of loading is obtained through equilibrium
considerations in the x, direction and is stated as

h
—J T, ds+J\ T,ds = ??;a,' (5)
AB L¥ -

where T, is the traction component in the x, direction on the external boundariecs AB and
EF. This condition allows for the numerical determination of the remote applied stress ., .

2.2. Constitutive relations

Now that the relevant conditions that must be satisfied on the external boundarics of
the trapezoidal region ABEF have been given, we turn our attention to the individual
material phases comprising the interior of the trapezoidal region. In the present analysis, a
graphite/epoxy composite material system is considered, and a description of the consti-
tutive law which governs the behavior of each phase follows.

Epoxy matrix and graphite fiber phases. It is assumed that the matrix is isotropic and
linearly elastic. The fibers are taken to be linearly elastic and transversely isotropic. The
elastic constants employed in this analysis were obtained by Kriz and Stinchcomb (1979)
and are given in Table 1. For the case of plane strain, the stress—strain relations for the
matrix phase can be written as
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where the parameters 4 and u are Lamé’s constants and the Greek indices «, # and y range
over | and 2. For the transversely isotropic fiber phase, the elastic stress-strain relations
for the case of plane strain are given by Hashin (1979). The non-zero components are
written as

oy =I(e), +&13)

O = (KT - GT)E‘,,}.é,,; + ZGTS,‘; (7)

where the constant /s related to the axial Poisson’s ratio v, and the transverse bulk modulus
Ky by

[= 2KTVA- (8)

In addition, the transverse bulk modulus Ky is related to the enginecring constants by the
relation

ErEAGy
Ky = o VAT
P 4G En—E En—4E G ovi ©)

where £, and £, are the transverse and axial Young's moduli of the fiber and G, is the
transverse shear modulus.

Interfuce model. Both a lincarly clastic and a lincarly viscoelastic constitutive relation
are considered for the interfacial zone. For the linearly elastic interface, it is assumed that
the normal traction between the fiber and matrix phases is proportional to the jump in the
normal displacement across the interface. Similarly, the tangential traction is taken to be
proportional to the jump in the tangential displacement across the interface. Thus,

Tn = kn[un]l
T, = k[u], (10)

where

u, =unn and T, = (o,nn)n

u—u, and T,=T-T, (1)

U,

are the normal and tangential displacement and traction vectors respectively, [. ], denotes
the jump in the relative quantity across the interface, &, and &, are normal and tangential
stiffness paramcters arbitrarily taken to be equal in this analysis, and T is the traction
vector (T, = o,,n). Here o,, = o,, is the Cauchy stress tensor. A positive jump in normal
displacement, [u,],, denotes normal scparation between the fiber and matrix phases.
However, we assume that a negative jump in normal displacement would correspond to a
physically unrealistic interpenetration of the matrix phase into the fiber phase, and thus we
enforce the impenetrability constraint
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[u]; =0. (12)

For a linearly viscoelastic interface, the time-dependent response of the interfacial zone
is taken into account. The material response in both the normal and tangential directions
is considered to be that of a standard linear solid (SLS). The SLS qualitatively represents
the behavior of an idealized cross-linked polymer and can be viewed as a spring in parallel
with a spring and a dashpot. The normal and tangential tractions T, and T, are then related
to the displacement jumps [u,]; and [u,]; across the interface by

T, L ke,
Tn+ T = ks,.[“n]l + T[un]l
Ti krl
T+ <= kg [u )i + —;‘{“Jl (13)

where &, and k, are the instantaneous (glassy) stiffness components and k&, _and k. are
the long-term (rubbery) stiffness components of the SLS. For convenience, the time constant
7 in expression (13) is taken to be unity throughout.

3. FINITE ELEMENT IMPLEMENTATION

In order to solve the now formulated boundary value problem, the finite element
method is employed. Throughout, we assume small displacements. The strain displacement
relation then takes the usual form

£y = (“:./+“/.i)/2 (14)
and the equilibrium equation is written as
G‘IJ = 0. (15)

For a fiber-reinforced composite with an interfacial zone, the Principle of Virtual Work
18 written as

J o,,5¢, dQ+J 5¢ dS = J' T,6u, dT" (16)
) Y r

where € denotes the interior of the trapezoidal region shown in Fig. 2, " is the cxternal
traction boundary, and S is the interfacial traction boundary. The du, are the kinematically
admissible displacements (satisfying the periodic displacement boundary conditions out-
lined in Section 2 and vanishing on the prescribed displacement boundary). The second
term in (16) is the virtual work of separation of the matrix and fiber phascs, i.c.

0¢ = T,6[u,], + T\o(u):. (7

The stiffness contribution of the interfacial zone arises naturally from this expression. A
four-node interface element with no thickness in its undeformed configuration is employed
in the numerical calculations. A brief formulation of the stiffness matrix for a single interface
element is given in Appendix B. Note that for the case of a linearly viscoclastic interface,
the time dependence of the interface enters into the formulation, and (16) must be discretized
in both space and time. A detailed formulation of this discretization is found in Appendix
C.

In order to approximately satisfy the impenetrability constraint (12), full Newton
Raphson equilibrium iteration is employed with a penalty-like stress update scheme in which
the interface is taken to have a suitably high normal stiffness parameter in compression.
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4. MACROSCOPIC BEHAVIOR

The numerical results of the present analysis provide a direct method for calculating
the effective transverse properties of the fiber-reinforced composite. For a composite with
a linearly elastic interface. the numerical results for the effective transverse bulk and shear
moduli are compared with the results of Hashin (1990). where the composite cylinder
assemblage (CCA) model is employed to obtain the effective transverse bulk modulus, and
the generalized self-consistent scheme (GSCS) model is used to determine the effective
transverse shear modulus. It is noted that the CCA model has been introduced in Hashin
and Rosen (1964) and generalized to transversely isotropic fibers and matrix in Hashin
(1979). In the context of perfect interface conditions the GSCS model has been applied by
Christensen and Lo (1979) to obtain the transverse shear modulus. Fora linearly viscoelastic
interface, the numerical results are compared with approximate expressions derived ana-
lytically for the time-dependent transverse properties of the composite.

4.1. Linearly elastic fiber/matrix interface

[t can be shown analytically that, due to its inherent elastic symmetry, the hexagonal
array composite with linearly elastic constituents is transversely isotropic, see Love (1927)
and Lekhnitskii (1963). Therefore. we assume that the effective elastic moduli CJ, are
related to the Cartesian components of the macroscopic or average stress and strain tensors
é,;and ¢, in the form

0:1,' = C:,"/'klﬁkl (18)

and that this relation takes the form (7) where the quantities in each expression are replaced
by their respective averaged or macroscopic counterparts (e.g. £, is substituted for ¢,
K7 for K ete.). The macroscopic response of the composite is significantly influenced by
the impenetrability condition (12), which acts as a unilateral constraint on the deformation
of the interface. When the constraint is not imposed, the response is tranversely isotropic
as expected. When the constraint is imposed, the response is not transversely isotropic but
depends upon the direction and character of the loading. For example, the constraint gives
nise to significant differences in the tensile and compressive response. These differences
are most pronounced when the interfacial stiffness parameters are low. In the present
investigation we consider uniaxial tensile loading only, and in this case the deviations from
transverse isotropy are slight.

Numerical procedure. Under the condition of CPD loading. the cffective transverse
shear and bulk moduli of the composite are obtained in the following manner. First, a
constant displacement A, is applied along the external boundary EF, and a constant
displacement — A, is applicd along the external boundary AB (see Fig. 2). The solution of
the finite clement equations yiclds the unknown, constant displacement A along the external
boundary AF. The average strain in the v, direction is then given by

Ey = —7 . (19)

The average strain in the x, direction is given by

0?

20)

_ 4

€y = —— ——.
J3b

By employing relation (5), the finite element solution also yields the remote applied stress.

This is equal to the average stress component §,, of the composite. Since there is no applied

loading in the x, direction, the average stress component &, = 0. Finally, by substituting

these averaged quantities into the plane strain constitutive relation (7), the effective trans-
verse shear and bulk moduli are found to be
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Fig. 3. Normalized effective transverse bulk modulus versus interface stiffness.
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Effective transverse bulk modulus. The numerical results for the effective transverse
bulk modulus KT arc compared with the results of Hashin (1990), where the CCA model
is cmployed. The CCA expression is given as

o o 2)

Kr—K,, = Ki +Gp,

where Ky and Gy are the transverse bulk and shear moduli of the matrix, and V,, and V;
are the matrix and fiber volume fractions. The quantity Ky, is the equivalent transverse bulk
modulus of the fiber~interfiace combination and can be expressed as

P aky k,

(r, = —————— 24
" ak,+2K;, (24)
where k, is the normal interfacial stiffness parameter, Ky, is the transverse bulk modulus of
the fiber, and a is the fiber radius. The numerical and CCA results for the effective transverse
bulk modulus are shown in Fig. 3. The effective modulus K#is plotted versus the normalized
interfacial stiffness. The normalization is chosen such that

k

k==
GT,"/a

(25)

where a is the radius of the fiber. As expected, when the impenetrability constraint (12) is
not enforced, the numerical and CCA results virtually coincide over the entire range of
interface stiffness parameters. However, when this constraint is enforced, the numerical
results deviate from the CCA results at relatively low interfacial stiffness parameters. The
magnitude of this deviation depends on the loading condition considered in the numerical
procedure. It is recalled that in the present analysis KT is determined by subjecting the
hexagonal array model to tensile uniaxial loading. It is noted that when condition (12) is
not imposed, the numerical value obtained for K% is independent of the loading condition
considered.

SAS 27:14-B
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Fig. 4. Normalized effective transverse shear modulus versus interface stiffness.

Effective transverse shear modulus. As pointed out by Hashin (1990). the effective
transverse shear modulus cannot in general be determined by employing the equivalent
fiber-interface concept. Unlike the CCA expression for the effective transverse bulk modulus
which is completely independent of the tangential interface stiffness parameter, the effective
transverse shear modulus is highly dependent on both stiffness components. However, for
the case when both the normal and tangential stiffness parameters are taken to be equal, it is
found that the expression for the effective transverse shear modulus obtained by substituting
approximate models for the fiber-interface shear modulus into available perfect interface
expressions serves as a good approximation over a large range of interfacial stiffness valucs.

In the present analysis, we employ an approximate expression for the shear modulus
ol the fiber interface combination which is written as

i aGk, ,
T ak 426G, (26)
where & is the tangential interfacial stiffness parameter, Gy, is the transverse shear modulus
of the fiber phase, and a is the fiber radius. It is noted that when the normal and tangential
stiffness parameters are taken to be equal, the result obtained by substituting (26) for the
transverse shear modulus of the fiber in the expression of Christensen and Lo (1979) is
indistinguishable from the GSCS result of Hashin (1990). In Fig. 4, the GSCS results
obtained by Hashin (1990) are compared with the numerical results. Results obtained by
substituting (26) for the shear modulus of the fiber phase in the lower bound expression
for arbitrary phase geometry given by Hashin (1979) arc also shown in the figure. The
effective transverse shear modulus normalized with respect to the shear modulus of the
matrix is plotted versus normalized interfacial stiffiness. Again, the normalization is chosen
as in (25). When the impenetrability constraint (12) is enforced, the numerical results
deviate significantly from the GSCS results at relatively low interfacial stiffness parameters.
When constraint (12) is not enforced, the deviation at low stiffnesses is less significant.
Again, when (12) is enforced, the magnitude of the deviation depends on the loading
condition imposed on the hexagonal array model in the numerical procedure. It is noticed
that under these circumstances the modified bound expression serves as a good model for
the effective transverse shear modulus of the composite. It must be remembered, however,
that this modified bound expression is not a bound but an approximate model for the
effective transverse shear modulus. The corresponding results for the effective transverse
butk and shear modulus versus fiber volume fraction for a fixed normalized interfacial
stiffness parameter (k = 0.1) are shown in Fig. 5.

4.2. Linearly viscoelastic fiber/matrix interface
In principle, if expressions for the effective moduli of the composite with a linearly
elastic interface are known, the correspondence principle can be employed in order to
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Fig. 5. Normalized transverse bulk and shear moduh versus fiber volume fraction.

calculate the effective time-dependent expressions for the composite with a lincarly visco-
clastic interface. Unfortunately, the exact elastic expression for the composite under con-
sideration remains to be determined. However, it is noticed that the CCA results for the
cffective transverse bulk modulus given in the previous section compare closely with the
numerical results for a wide range of stiffness parameters over the entire range of volume
fractions considered. We thus choose the lincarly elastic CCA expression and employ the
correspondence principle to obtain a model for the time-dependent effective modulus
K¥(0) of the fiber-reinforced composite with a linearly viscoelastic interfacial zone. In order
to obtain an analytic expression for the time-dependent etfective transverse shear modulus
G 1(1), the moditied bound expression obtained in the previous section is chosen since it is
algebraically simple and lends itself well to analytic Laplace transform inversion. However,
it is noted that the uscfulness of the resulting time-dependent model for the effective
transverse shear modulus is limited, since it is only valid for the special case when the
normal and tangential interfacial stiffness parameters are assumed to be synchronous during
interfacial stress relaxation.

Analytical model. By substituting the transformed relaxation function of the SLS,
sG(s), into (24) and (26), the transformed expressions sl(’T,(s) and sGr'(.s') are obtained.
Substitution of these expressions for K’rr and Gr, in the CCA result (23) and the lower
bound result of Hashin (1979) yiclds sK'#(s) and sG1(s). Generally a problem arises here
in inverting back into the timc domain. However, for this relatively simple viscoelastic
interface model, the relations for K¥(s) and G ¥(s) are easily inverted, yielding a model for
the time-dependent cffective moduli K¥(f) and G#(1). The effective relaxation function in
bulk can be expressed as

Kt = I\'?’+(K?‘—K—F:)C_'T“‘ 27N

while the effective relaxation function in shear can be written as
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GHD =GT +(GF —-GT))e " (28)

where KT and Gt arc the glassy or instantancous values for the effective transverse shear
and bulk moduli of the composite, K¢ and G} are the corresponding long-term values
obtained as time approaches infinity, and T and T, are the respective time constants in
transverse bulk and shear. These quantities are defined in Appendix A.

Comparison of analytical model with numerical results. The numerical procedure
employed to determine the effective relaxation moduli K¥(¢) and G¥(t) is almost identical
to that used in the numerical determination of the elastic transverse moduli. A step dis-
placement A,H(¢) is applied along the external boundary EF, and —A,H (1) is applied
along the external boundary AB (sce Fig. 2). Using relations (21) and (22), the effective
moduli are computed and plotted as a function of time. The effective relaxation moduli

¥(1) and G¥(t) predicted by the analytical model and those obtained numerically are
plotted for a fixed fiber volume fraction (¥; = 0.5) as shown in Fig. 6. Again, the normal
and tangential interfacial stiffness paramecters arc assumed to be synchronous during inter-
facial stress relaxation, and the glassy stiffness of the interface ranges from a normalized
value of (k; = 10) to a normalized value of (k, = 1). Throughout, the ratio of glassy to
long-term interfacial stiffness is taken to be (k,/k . = 10). The normalization is chosen such
that

ki‘n
kg [
Grm/tl
k.
k, = . 29)
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Fig. 7. Normalized hoop stress distributions in the matrix material just outside the interface during
stress relaxation,

As shown in the figure, the approximate analytical model compares extremely well with the
numerica! results over the range where the interfacial stitfness is relatively high. As expected,
when constraint (12) is enforeed, for the relatively low glassy stitfness value (k, = 1), the
numerical results lic below the derived results for the transverse bulk relaxation modulus,
and above the derived results for the transverse shear relaxation modulus. It is interesting
to note that when the impenctrability constraint (12) is relaxed, the numerical results
virtually coincide with the model over the entire range.

5. MICROSCOPIC BEHAVIOR

In this section, we turn from a macroscopic perspective and focus on the local or
microscopic behavior of the transversely-loaded fiber-reinforced composite. In particular,
we examine the influence of interfacial stress relaxation on the stress fields in the matrix
material contiguous to the interface. Throughout, the composite is subjected to a step
displacement in the mid-CPD loading direction, the more severe of the two loading cases
considered, and normalized circumferential stress distributions in the matrix material just
outside of the interface are obtained during the numerical simulation of stress relaxation.

During the interfacial stress relaxation, the circumferential stress g, normalized with
respect to the remote applied stress o is plotted versus angle 8 as shown in Fig. 7. In the
upper diagram, the normalized glassy stiffness of the interface is taken to be (k, = 10), and
the ratio of glassy to long-term stiffness is taken to be (k,/k,, = 10). Again, the time constant
T1s taken to be unity for convenience. As shown in the figure, the normalized circumferential
stress increases substantially as time progresses and as the effective stiffness of the interface
decreases. Note that as the interface relaxcs, a relatively abrupt change in the distributions
occurs at approximately 75", This is due to a local stress concentration at the transitional
point where the compressive region of the interface begins. The resulting distributions, as
interfacial stress relaxation proceeds, are shown in the lower diagram where the normalized
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glassy stiffness of the interface is taken to be (k, = ). As time progresses, a noticeable shift
occurs in the distributions. The maximum normalized circumferential stress gradually
relocates from approximately 75° to approximately the 45" mark. In a recent experimental
study by Daniel et al. (1989), when a silicon carbide/glass—ceramic composite having closely
spaced, near hexagonally packed fibers was transversely loaded. fracture was observed to
initiate in the form of radial cracks in the matrix at this 45° location.

6. CONCLUDING REMARKS

In the present work. the transverse loading of the hexagonal array composite is
examined from both a macroscopic and a microscopic point of view. In the macroscopic
analysis. the composite is subjected to tensile loading and the effective transverse properties
are obtained. For the case of a linearly elastic interface, the numerical results are compared
with expressions obtained from the composite cylinder assemblage and generalized self-
consistent scheme models. It is found that when the impenetrability constraint is imposed,
the mechanical behavior of the hexagonal array composite deviates slightly from transverse
isotropy and the numerical results deviate significantly from the analytic expressions at
low interfacial stiffness values. The magnitude of this deviation depends on the loading
configuration considered in the numerical procedure. Note that we impose this constraint
to avoid an unrealistic interpenctration of the matrix phasc into the fiber phase. For the
case of a lincarly viscoelastic interface, the numerical results for the time-dependent trans-
verse moduli are compared with approximate expressions derived analytically. Good agree-
ment is found among the results over a large range of interfacial stiffnesses. In the mic-
romechanical analysis, normalized circumferential stress distributions are obtained in the
matrix material contiguous to the interface during interfacial stress refaxation. It is found
that these distributions change substantially as the effective stiffness of the interface
decereases. The maximum circumferential stress concentration is found to occur at approxi-
mately 45 at relatively low interfacial stiffness values.
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APPENDIX A: DEFINITIONS

In this Appendix. we define the quantities contained within the derived expressions (27) and (28) for the
time-dependent relaxation moduli. The expressions for K3 and G§. are obtained by making the following
substitutions ;

(1) Substitute for k, in (24) k. the glassy stiffness component of the SLS in the normal direction to obtain the
intermediate expression KT' for the glassy effective bulk modulus of the fiber-interface combination. Similarly,
substitute for &, in (26) k, . the glassy stiffness component of the SLS in the tangential direction to obtain the
glassy effective shear modulus Gy of the fiber-interface combination.

(2) Substitute the expression Ky info the CCA result (23) and G; into the lower bound expression for the
arbitrary phase geometry of Hashin (1979). )

Thus, the effective glassy moduli are written as

. i
=K + i v (AD
+ m
Ki—K:,  Ki +Gr,
Ve
i = A2
=Gt & +2G )V (A2
+
GT. -Gy, 267 (K +Gy)
where
akpk,
T, FIKy, Ay
-~ “G‘rrk‘u Ad
On = EIT G, (A4
and the long-term effective moduli are expressed as
¥,
Kt =K+ — Sy, o (AS)
R, ~Ki T K +G,
Ve
it =G - A6
G, =G+ l (Kr.+ 3GV, (A6)
Cr =G, t 26, (K. +Gr)
where
ak ,’k .
= m (A7)
aGrk A8
o T Gk, +2Gy, (A8)
Finally, the time constants T, and T;; are written in terms of the time constant ¢ of the SLS as
k" kr l+m(kr —'Krm)
= : (A9)

Te= Tk Tmik; <Kod

k'!
TG =7(—':t.0;: MI+H(G—VK—K$ (A‘O)

where
¥,
.S All
"= K. ¥Gn, ALh
Ky +2G¢ )V,
n (Kx, ) (A12)

T 2G;(Kr,+Gr)'
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reference plane physical plane

Fig. Bl. Reference and physical plane representations of the 4-node interface element.

APPENDIX B: INTERFACE ELEMENT STIFFNESS FORMULATION

The following is a brief formulation of the stiffness matrix for a single interface element. Shown in Fig. Bl
are the reference plune and physical plane representations of the 4-node interface element employed to model the
interface layer between the fiber and matrix phases. As shown in the figure. nodes (1.2) and nodes (3.4) are
coalesced. creating an interface clement having no thickness in its undeformed state. The axes of the reference
plane, n and t, correspond to directions normal and tangential to the interfuce boundary, while the axes of the
physical plane, x, and x,, correspond to the Cartesian coordinate system of Fig. 2. For a lincarly elastic interface,
the virtual work of separation of the matrix and fiber phases is written as

o =k, [ )y 0ee, ]y + Kk [0, ]i0]1e,)- (B1)

It is assumed that the normal and tangential displacement jumps across the interface i, ) and [i]; vary lincarly
along the fength 7 of the clement. The interpolation for this clement is then

(e = AdLN,
[} = Ad, N, (B2)
where the repeated index i is summed over 1,2 and

Ady =dy —dy. Adyy =dy—4d

Ady =dy—dy,  Ady =dy~d,

(B3)

are the discrete relative nodal displacements in the normal and tangential directions, respectively. The shape
functions &, in (B2) are given by

N o= Y1 +1,0) (B4)
where the 1, are the coordinates of nodes (3,4) and (1,2) in the reference plane. The relative displacement ficld
across the interface is then written in discrete form as

(u], = NAd. (BS)

The vector containing the relative nodal displucements Ad is related to the actual nodal displacements df
= (d,,.d,,}, where the subscript j takes on the nodal values | 4, by

Ad = HTd. (B6)
Here His a 4 x 8 Boolean operator matrix and T is a 8 x 8 coordinate transformation matrix. The element stiffness

matrix then takes the familiar form

K, = [ B'DBJS (B7)
S
where
B = NHT (B8)

is the matrix which operates on the actual nodal displacements yiclding the normal and tangential displacement
jumps across the interface, and D is the matrix containing the interface stiffness parameters.
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APPENDIX C: FINITE ELEMENT FORMULATION FOR LINEARLY VISCOELASTIC INTERFACE

For the case of a linearly viscoelastic interface, the time dependence of the interface enters into the formutation,
and the Principle of Virtual Work

J-a,,éc,,dQ+J‘6d>dS=J‘T,du,dr CH
o s r

must be discretized both in space and time. The following implementational details are based on a solution
procedure that has been discussed by Taylor ef al. (1970). Writing (C1) in incremental form at time ¢,, , yields

J Aa, b, dn+j AT, 0[u), dS =J AT, dr-U v, 0, dQ+J‘ T.6[u,): dS-J T.5u, dr] (C2)
0 s r ] 5 T n

where (s,),,, = (0,,). +(40,,), and (T)),, , = (T,),+(AT)),. Using (C2) as our starting point, we now express the
components T, of the interfacial traction vector in terms of the [4,]; as follows. The standard linear solid can be
viewed as comprising two Maxwell elements in parallel, one with an infinite time constant. t. The governing
differential equation for one Maxwell element is simply expressed as

T .
Ti+ o7 = kD) (€3

where the superscript j refers to the jth Maxweli element of the SLS. For extension at a constant rate, [i],, the
exact solution of (C3) is

THO = kD )ie’ [V —exp (=47, (C4)

Letting (Alw}). = ([])0e i = (1)), and A1 = ¢, ., —¢,. the interfacial traction components 7, at time ¢, , are
obtained by expressing (C4) in incremental form and summing the partial stresses. Thus

(T, = ¥ [T exp(=Ad/t) + &/ Alu L ian], (CS)

fe

where
h(An = '(1 —exp(—Atft"))/AL. (C6)

Note that as the time constant ¢/ approaches infinity, /(A7) in (C6) approaches unity. Relerring back to eqn (C2),
we introduce standard finite element shape functions, N, and use the arbitrariness of the variations in the nodal
displacements to obtain the discrete form

i [f B/D,B, dQ+JBrDBds] Adl = Y [I NIT,, dr—f B'T,,, dS—J‘ Bla,,, dﬂ]
Pl I N n st 5 o

where the vector Ad; contains the discrete nodal displacement increments at the ith iteration and n, refers o the
number of clements in the model. The first term on the left side of (C7) contains the symmetric gradient operator
matrix B, and the plane strain constitutive matrix D,.. The second term on the left side of (C7) constitutes the
interface stiffness contribution of the interfuce layer ; see Appendix B for interfuce clement formulation. Here, the
intertice constitutive matrix, 1. is a 2 x 2 diagonal matrix whose components are given by

{cn

B, = ¥ h(ADK;

J=1

D,y = ¥ hADK! (C8)

j-

where &) and k! are the normal and tangential stiffncss parameters associated with the jth Maxwell element of
the SLS, and h(Av) is defined by (C6). Note that this entire procedure can casily be extended for more general
constitutive relations, for example, by modeling the normal and tangential material response of the interface with
a greater number of Maxwell elements.
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